197 research outputs found

    Experimental evidence of thermal fluctuations on the X-ray absorption near-edge structure at the aluminum K-edge

    Full text link
    After a review of temperature-dependent experimental x-ray absorption near-edge structure (XANES) and related theoretical developments, we present the Al K-edge XANES spectra of corundum and beryl for temperature ranging from 300K to 930K. These experimental results provide a first evidence of the role of thermal fluctuation in XANES at the Al K-edge especially in the pre-edge region. The study is carried out by polarized XANES measurements of single crystals. For any orientation of the sample with respect to the x-ray beam, the pre-edge peak grows and shifts to lower energy with temperature. In addition temperature induces modifications in the position and intensities of the main XANES features. First-principles DFT calculations are performed for both compounds. They show that the pre-edge peak originates from forbidden 1s to 3s transitions induced by vibrations. Three existing theoretical models are used to take vibrations into account in the absorption cross section calculations: i) an average of the XANES spectra over the thermal displacements of the absorbing atom around its equilibrium position, ii) a method based on the crude Born-Oppenheimer approximation where only the initial state is averaged over thermal displacements, iii) a convolution of the spectra obtained for the atoms at the equilibrium positions with an approximate phonon spectral function. The theoretical spectra so obtained permit to qualitatively understand the origin of the spectral modifications induced by temperature. However the correct treatment of thermal fluctuation in XANES spectroscopy requires more sophisticated theoretical tools

    Virtual patients design and its effect on clinical reasoning and student experience : a protocol for a randomised factorial multi-centre study

    Get PDF
    Background Virtual Patients (VPs) are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent) and structured clinical reasoning feedback (present or absent). Methods/Design This is a multi-centre randomised 2x2 factorial design study evaluating two independent variables of VP design, branching (present or absent), and structured clinical reasoning feedback (present or absent).The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded. In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for both primary outcomes

    X-ray Linear Dichroism in cubic compounds: the case of Cr3+ in MgAl2O4

    Full text link
    The angular dependence (x-ray linear dichroism) of the Cr K pre-edge in MgAl2O4:Cr3+ spinel is measured by means of x-ray absorption near edge structure spectroscopy (XANES) and compared to calculations based on density functional theory (DFT) and ligand field multiplet theory (LFM). We also present an efficient method, based on symmetry considerations, to compute the dichroism of the cubic crystal starting from the dichroism of a single substitutional site. DFT shows that the electric dipole transitions do not contribute to the features visible in the pre-edge and provides a clear vision of the assignment of the 1s-->3d transitions. However, DFT is unable to reproduce quantitatively the angular dependence of the pre-edge, which is, on the other side, well reproduced by LFM calculations. The most relevant factors determining the dichroism of Cr K pre-edge are identified as the site distortion and 3d-3d electronic repulsion. From this combined DFT, LFM approach is concluded that when the pre-edge features are more intense than 4 % of the edge jump, pure quadrupole transitions cannot explain alone the origin of the pre-edge. Finally, the shape of the dichroic signal is more sensitive than the isotropic spectrum to the trigonal distortion of the substitutional site. This suggests the possibility to obtain quantitative information on site distortion from the x-ray linear dichroism by performing angular dependent measurements on single crystals

    Problem formulation by medical students: an observation study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medical problems are often complex and ill-structured. In formulating the problem, one has to discriminate pertinent elements from irrelevant information in order to effectively find a solution. In this observation study, we describe how medical students formulate the problem of a complex case.</p> <p>Methods</p> <p>32 third year medical students were presented with a complex case of endocarditis. They were asked to synthesize the case and give the best formulation of the problem. They were then asked to provide a diagnosis. A subsequent group of 25 students were presented with the problem already formulated and were also asked for the diagnosis. We analyzed the student's problem formulations using the presence or absence of essential elements of the case, the use of higher-order concepts and the use of relations between concepts.</p> <p>Results</p> <p>12/32 students presented with the case made the correct diagnosis. Diagnostic accuracy was significantly associated with the use of higher-order concepts and relations between concepts. Establishing explicit relations was particularly important. Almost all students who missed the diagnosis could not elicit any relations between concepts but only reported factual observations. When presented with an already formulated problem, 19/25 students made the correct diagnosis. (p < 0.05)</p> <p>Conclusion</p> <p>When faced with a complex new case, students may not have the structured knowledge to recognize the nature of the problem. They have to build new schema or problem representation. Our observations suggest that this process involves using higher-order concepts and establishing new relations between concepts. The fact that students could recognize the disease when presented with a formulated problem but had more difficulty when presented with the original complex case indicates that knowledge of the clinical features may be necessary but not sufficient for problem formulation. Our hypothesis is that problem formulation represents a distinct ability.</p

    Proposed Standards for Medical Education Submissions to the Journal of General Internal Medicine

    Get PDF
    To help authors design rigorous studies and prepare clear and informative manuscripts, improve the transparency of editorial decisions, and raise the bar on educational scholarship, the Deputy Editors of the Journal of General Internal Medicine articulate standards for medical education submissions to the Journal. General standards include: (1) quality questions, (2) quality methods to match the questions, (3) insightful interpretation of findings, (4) transparent, unbiased reporting, and (5) attention to human subjects’ protection and ethical research conduct. Additional standards for specific study types are described. We hope these proposed standards will generate discussion that will foster their continued evolution

    Using a conceptual framework during learning attenuates the loss of expert-type knowledge structure

    Get PDF
    BACKGROUND: During evolution from novice to expert, knowledge structure develops into an abridged network organized around pathophysiological concepts. The objectives of this study were to examine the change in knowledge structure in medical students in one year and to investigate the association between the use of a conceptual framework (diagnostic scheme) and long-term knowledge structure. METHODS: Medical students' knowledge structure of metabolic alkalosis was studied after instruction and one year later using concept-sorting. Knowledge structure was labeled 'expert-type' if students shared ≥ 2 concepts with experts and 'novice-type' if they shared < 2 concepts. Conditional logistic regression was used to study the association between short-term knowledge structure, the use of a diagnostic scheme and long-term knowledge structure. RESULTS: Thirty-four medical students completed the concept-sorting task on both occasions. Twenty-four used a diagnostic scheme for metabolic alkalosis. Short-term knowledge structure was not a correlate of long-term knowledge structure, whereas use of a diagnostic scheme was associated with increased odds of expert-type long-term knowledge structure (odds ratio 12.6 [1.4, 116.0], p = 0.02). There was an interaction between short-term knowledge structure and the use of a diagnostic scheme. In the group who did not use a diagnostic scheme the number of students changing from expert-type to novice-type was greater than vice versa (p = 0.046). There was no significant change in the group that used the diagnostic scheme (p = 0.6). CONCLUSION: The use of a diagnostic scheme by students may attenuate the loss of expert-type knowledge structure

    Collisional kinetics of non-uniform electric field, low-pressure, direct-current discharges in H2_{2}

    Full text link
    A model of the collisional kinetics of energetic hydrogen atoms, molecules, and ions in pure H2_2 discharges is used to predict Hα_\alpha emission profiles and spatial distributions of emission from the cathode regions of low-pressure, weakly-ionized discharges for comparison with a wide variety of experiments. Positive and negative ion energy distributions are also predicted. The model developed for spatially uniform electric fields and current densities less than 10310^{-3} A/m2^2 is extended to non-uniform electric fields, current densities of 10310^{3} A/m2^2, and electric field to gas density ratios E/N=1.3E/N = 1.3 MTd at 0.002 to 5 Torr pressure. (1 Td = 102110^{-21} V m2^2 and 1 Torr = 133 Pa) The observed far-wing Doppler broadening and spatial distribution of the Hα_\alpha emission is consistent with reactions among H+^+, H2+_2^+, H3+_3^+, and HH^-H ions, fast H atoms, and fast H2_2 molecules, and with reflection, excitation, and attachment to fast H atoms at surfaces. The Hα_\alpha excitation and H^- formation occur principally by collisions of fast H, fast H2_2, and H+^+ with H2_2. Simplifications include using a one-dimensional geometry, a multi-beam transport model, and the average cathode-fall electric field. The Hα_\alpha emission is linear with current density over eight orders of magnitude. The calculated ion energy distributions agree satisfactorily with experiment for H2+_2^+ and H3+_3^+, but are only in qualitative agreement for H+^+ and H^-. The experiments successfully modeled range from short-gap, parallel-plane glow discharges to beam-like, electrostatic-confinement discharges.Comment: Submitted to Plasmas Sources Science and Technology 8/18/201

    Utilization of case presentations in medical microbiology to enhance relevance of basic science for medical students

    Get PDF
    Background : Small-group case presentation exercises (CPs) were created to increase course relevance for medical students taking Medical Microbiology (MM) and Infectious Diseases (ID) Methods : Each student received a unique paper case and had 10 minutes to review patient history, physical exam data, and laboratory data. Students then had three minutes to orally present their case and defend why they ruled in or out each of the answer choices provided, followed by an additional three minutes to answer questions. Results : Exam scores differed significantly between students who received the traditional lecture-laboratory curriculum (Group I) and students who participated in the CPs (Group II). In MM, median unit exam and final exam scores for Group I students were 84.4% and 77.8%, compared to 86.0% and 82.2% for Group II students (P&#x200A;&#60;&#x200A;0.018; P&#x200A;&#60;&#x200A;0.001; Mann-Whitney Rank Sum Test). Median unit and final ID exam scores for Group I students were 84.0% and 80.0%, compared to 88.0% and 86.7% for Group II students (P&#x200A;&#60;&#x200A;0.001; P&#x200A;&#60;&#x200A;0.001). Conclusion : Students felt that the CPs improved their critical thinking and presentation skills and helped to prepare them as future physicians
    corecore